

Project Deep Learning

Senior Design Team 10 (SD_MAY_10)

The Team

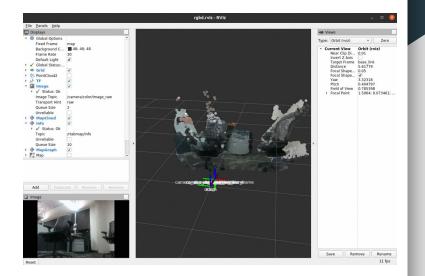
Jazzlyn Jacobus - Computer Engineering

Benito Moeckly - Computer Engineering

Jose Carlos Garcia - Computer Engineering & Cybersecurity Engineering

Caleb DeBoef - Electrical Engineering

Advisor & Client: Professor Rover


Project Vision

Problem Statement

Machine Learning Engineer 4th fastest growing job market (via LinkedIn)

The gap in Iowa State's ECPE curriculum

- No dedicated classes on machine learning for embedded systems for undergraduates
- Machine learning is a quickly growing field, Iowa State should update the core curriculum accordingly

Our (initial) solution

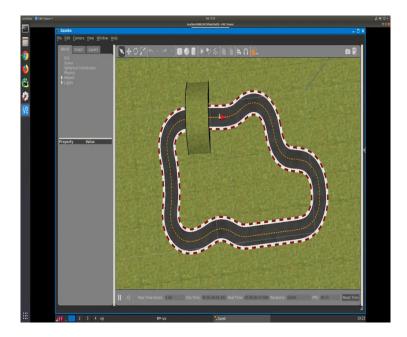
Initially, we explored the possibility of developing a CPRE 288 lab involving the AWS DeepRacer (more on this later) and teaching the robot to run a few laps via reinforcement training

Teaching the AWS DeepRacer turned out to be trivial, among a few other issues:

- Using the AWS servers can get expensive quickly
- The robot's track is space consuming
- AWS only offered access to the reward function

Image courtesy of aws.amazon.com

The Deep Learning Solution

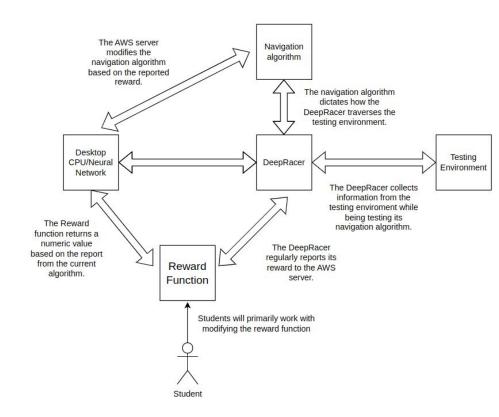

A testbed built on the DeepRacer robot

The DeepRacer software went open source in April of 2021

Students will learn about embedded machine learning through a custom DeepRacer Core Application via labs/assignments

Particular focus on navigating the maze from CPRE 288: Embedded Systems with ML

Students interact with DeepLearner via desktop interface



Overview of "DeepLearning"

AWS Deepracer Top-level System Diagram

Built for the student

Focus on basic machine learning

Allow for parameters to be passed to the sensors on the DeepRacer

Allow students to build their own reward functions based on sensor input

Students will be able to choose from Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC) training algorithms

Requirements

User Requirements:

- Must introduce Machine Learning topics in an easy to understand environment for students based in Embedded Systems
- Provide students with the ability to easily change sensor parameters and submit their reward function

Software Requirements:

- Must implement a locally trained model for scalability and to reduce costs
- Must provide the ability to be simulated and showcased virtually

Lab Requirements:

• Develop a lab based on CPRE 288 Maze project using ML

Design Complexity

Reinforcement learning/deep learning

- We are implementing a reinforcement learning model
- This is when learning is done on a trial and error basis
- Desirable/undesirable outcomes are dictated by a reward function

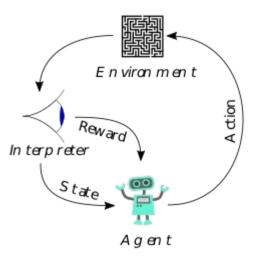


Image courtesy of wikipedia.com

Design Complexity

Network Infrastructure Development

- Maintain services typically provided by AWS for cost efficiency
- S3 Protocol implemented through Open Source software
- Implement SageMaker locally
- RoboMaker has Gazebo as part of ROS

AWS DeepRa	acer uses the following AWS services to manage required resources:
Amazon Sim	ple Storage Service
To store to	rained model artifacts in an Amazon S3 bucket.
AWS Lambda	a
To create	and run the reward functions.
AWS CloudFo	ormation
To create	training jobs for AWS DeepRacer models.
SageMaker	
To train th	ne AWS DeepRacer models.
AWS RoboMa	aker
To simulat	te an environment for both training and evaluation.

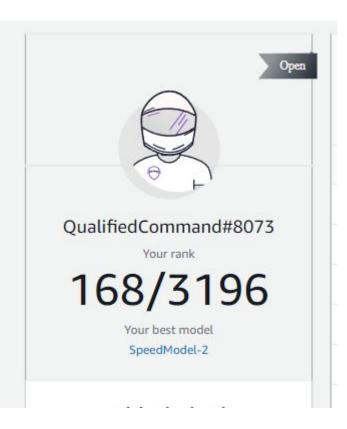
Design Complexity

Desktop Application Development

- Creating a development environment from scratch for students
- Students will create their reward function and manipulate sensors using this application

⊡- Session Logging ⊡- Terminal	Basic options for your PuTTY session		
	Specify the destination you want to connect to Host <u>N</u> ame (or IP address) <u>P</u> ort		
Keyboard Bell	203.0.113.0	22	
	Connection type: Raw <u>T</u> elnet Rlogin Load, save or delete a stored sessi Sav <u>e</u> d Sessions		
	Default Settings	Load Sa <u>v</u> e	
Proxy Telnet Rlogin		<u>D</u> elete	
SSH	Close window on e <u>x</u> it: Always Never O	nly on clean exit	

A Prototype of the DeepRacer

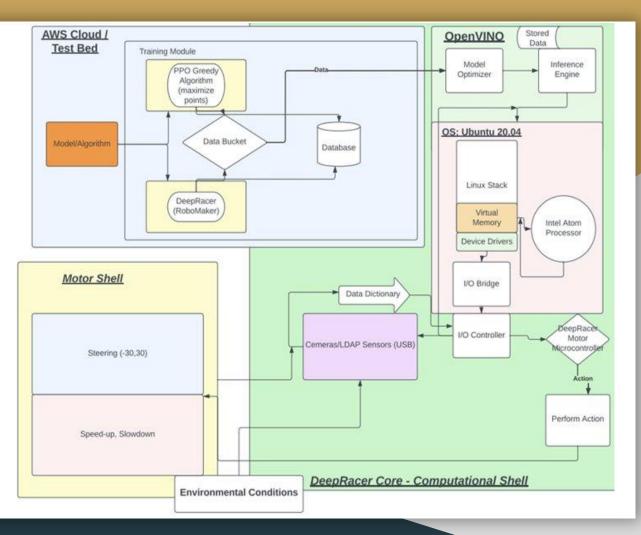

Current implementation

Developed multiple reward functions during our initial exploration of the DeepRacer

Provided exposure to the DeepRacer and its components

Showcased a few issues with implementing such a system/showed issues in being main focal point

We're ranked top 200 in the world for this season!



System Design

System Design

Four Components in our Implementation:

- A custom DeepRacer Core
- A custom Testbed (imitated AWS services)
- Physical Hardware/Sensors
- Student focused GUI

The DeepRacer, an Embedded System

Images courtesy of aws.amazon.com

The DeepRacer, a computational system

		NGINX (W	/eb Proxy)		
Web Server ROS node	Web Video ROS node	Control ROS node	Battery ROS node	Media ROS node	Inference ROS node
Ro	ot Operation Sy	stem (Robotic M	liddleware Appli	cation Framewo	rk)
	Ubuntu Ope	ration System (F	Robot Software E	Brain Kernel)	
	×(Compute (Robot	Hardware Head)	
	Car	nera (Robot Har	dware Vision Ser	nse)	
		RC CAR (Robot	Hardware Body)		

DeepLearning

Introduce Machine Learning via a reward function

Fork of the DeepRacer core, implementing all functionality locally

Interacted with via a desktop application

Built on Embedded System's topics and themes, to the right is configuring the RC Car's MCU

•••

void GazeboRosDeepRacerDrive::Load(gazebo::physics::ModelPtr _model, sdf::ElementPtr _sdf)

impl_->model_ = _model;

auto world = impl_->model_->GetWorld(); auto physicsEngine = world->Physics(); physicsEngine->SetParam("friction_model", std::string("cone_model"));

// Initialize ROS node
impl_->ros_node_ = gazebo_ros::Node::Get(_sdf);

// Get QoS profiles
const gazebo_ros::QoS & qos = impl_->ros_node_->get_qos();

impl_->max_speed_ = _sdf->Get<double>("max_speed", 4.0).first; impl_->max_steer_ = _sdf->Get<double>("max_steer", 0.523599).first;

impl_->wheel_radius_ = _sdf->Get<double>("wheel_radius", 0.03).first; // wheel seperation is the distance between the two rear wheels or two front wheels impl_->wheel_separation_ = _sdf->Get<double>("wheel_separation", 0.159202).first; // wheel base is the distance between the rear and front wheels impl_->wheel_base_ = _sdf->Get<double>("wheel_base", 0.164023).first;

```
// Update rate
auto update_rate = _sdf->Get<double>("update_rate", 100.0).first;
if (update_rate > 0.0) {
    impl_->update_period_ = 1.0 / update_rate;
} else {
    impl_->update_period_ = 0.0;
}
```

impl_->last_update_time_ = _model->GetWorld()->SimTime();

impl->cmd_vel_sub_ = impl->ros_node_->create_subscription<geometry_msgs::msg::Twist>(
 "cmd_vel", qos.get_subscription_qos("cmd_vel", rclcpp::QoS(1)),
 std::blan(&&azeboRosDeepRacerDrivePrivate::OnCmdVel, impl_,get(), std::placeholders:: 1));

```
RCLCPP_INFO(
    impl_->ros_node_->get_logger(), "Subscribed to [%s]", impl_->cmd_vel_sub_->get_topic_name());
```


Implementation Plan for DeepLearning

Project Plan

Agile Approach

Phase 1:

- Complete pivot to new project direction
- Research core technologies we'll be implementing
- Develop first model ~ January 15th

Phase 2:

- Implement Local Training Module/Hardware
- Develop DeepLearning Desktop Application
- Develop Lab for Focus Group
- Test implementation
- Implement Student GUI

«	Nov 14	Dec 12	Jan 9	1
v v1.0				
DeepRacer Core Reserarch	DeepRacer Core Reserv	arch		
Prepare the Deepracer		Prepare the Deepracer		
Local Training Environment		Local Training Environ	nment	
Implement Example DeepRacer A		Implement Example D	DeepRacer Application	
Research Gazebo for Simulation E		Research Gazebo for Simulation Environment		
> v2.0			> v2.0	
3 w 2				
ML Research	ML Research			

Project Deep Learning: Phase 1 Development

«	Jan 9	Feb 6		Mar 6	Apr 3	May 1
> v1.0		5				
~ v2.0						
Develop Security Policies for Virtual/Physical Environment	Develop Security Policies for Virtual/	/Physical Environment				
Prepare Physical Model	Prepa	are Physical Model				
Prepare Example Lab	Prepa	are Example Lab				
Custom DeepRacer Core Development	Custo	om DeepRacer Core Development				
Implement first virtual environment		Implement first vir	tual environment			
Develop Student GUi			Develop Student GUi			
Test Example Lab Implementation			Test Example Lab Impleme	entation		
Implement Lab Environment on Application				Implement Lab Environment on Application	I	
Prepare Environment for Scalability					Prepare Environment for Scalability	
Test example lab on focus group of students					Test example lab on focus group of students	
Demo / Deployment					Demo / Deploym	ent
Y						
ML Research						

Project Deep Learning: Phase 2 Development

Testing

DeepLearning Application (our DeepRacer Core Implementation):

• Continuously test, gain feedback via focus group, make adjustments to the framework

Educational Materials, and User GUI:

• Experiment with focus group, gain feedback, make adjustments

DeepRacer Testing:

- Unit testing on core nodes
- Implementation testing in virtual environment

Virtual Sandbox Testing:

• Unit, Acceptance, and Regression Testing in comparative analysis vs physical data

Conclusion

Closing

This has been an unusual experience, in a good way

We're taking part of the educational experience just as much as the future students will

Despite the pivot to a new goal, this new track is one we're excited about

For now:

- Wrap up phase one's research and development
- Ramp up experiments with the DeepRacer Core and its components

Thank you!

Sources

AWS DeepRacer_and_Sensor_Guide.pdf (awsstatic.com)